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ABSTRACT 

The tactic of "relaxation" has often been used in one guise 

or another in order to cope with mathematical programs with a large 

number of constraints, some or all of which may be only implicitly 

available. By "relaxation" we mean the solution of a given problem 

via a sequence of smaller problems that are relaxed in that some of 

the inequality constraints are temporarily ignored. Relaxation has 

been used primarily in the context of linear programming, but in this 

paper we examine a version that is valid for a general class of con- 

cave programs. Constraints are dropped as well as added from relaxed 

problem to relaxed problem. A specialization to the completely linear 

case is shown to be equivalent to Lemke's Dual Method. This result 

permits some pertinent inferences to be drawn from the extensive com- 

putational experience available for the (primal) Simplex Method. 

Other matters pertaining to computational efficacy are discussed. An 

interpretation of relaxation in terms of the dual in the nonlinear 
also 

case is/established. The optimal multipliers generated by successive 

relaxed problems turn out to comprise a sequence of improving feasible 

solutions to the minimax dual. When interpreted in this way, it be- 

comes apparent that relaxation corresponds to just the opposite tactic- 

which we call "restriction"--öpplied to the dual problem. Restriction 

is an equally interesting and useful tactic in its own right, and its 

main features are outlined. 

. 



1. 

I.    INTRODUCTION 

Quite often an optimization problem with some inequality con- 

straints possesses one or more of the following properties: 

(1) prior knowledge is available concerning which of the con- 

straints might be active at an optimum solution; 

(2) there are so many constraints that the dimension limits 

of coded algorithms for available computers are exceeded; 

(3) some of the constraints are available only Implicitly, 

and can be generated in explicit form only at substantial 

expense. 

Property (l) may hold when a variant of the problem has been 

solved before, or when the problem is amenable to physical or mathe- 

matical Insight.    Property (2) is the seemingly ubiquitous bane of prac- 

tical applications.    And property (3), usually in conjunction with pro- 

perty (2),  is a frequent consequence of mathematical manipulations of a 

more natural problem formulation. 

For problems such as these a rather obvious "relaxation" tac- 

tic comes to mind for use in conjunction with any algorithm that would 

be applicable were it not for properties (2) or (3):    solve a relaxed 

version of the given problem that Ignores some of the inequality con- 

straints; if the resulting solution satisfies all 01 the Ignored con- 

straints then it must be optimal in the original problem, but otherwise 

generate and include one or more violated constraints in the relaxed 

problem and reoptimize it; continue to generate and add violated con- 

straints in this fashion until the original problem has been solved . 

O.B. Dantzlg [6] 13 largely responsible for popularizing this tactic in 
the context of linear programming.    He called it "the method of additional 
restraints" for handling "secondary constraints".    See also Thompson, 
Tonga and Zionts  [23], 
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2. 

This tactic seems quite promising if (as is usually the case) only a 

fairly small proportion of all Inequality constraints is actually 

binding at an optimal solution of the original problem, provided that 

reasonably efficient mechanisms are available for identifying violated 

constraints and reoptimlzing the relaxed problems.    A useful improve- 

ment Involves dropping amply satisfied constraints of the relaxed pro- 

blem from time to time, but this must be done so as not to destroy the 

inherent finiteness of the procedure. 

It is interesting to observe that Lemke's Dual Method [l?] 

can be Interpreted as a procedure for Implementing the Improved tactic 

within the specialized context of linear programming.    Curiously this 

conspicuous interpretation seems never to have been explicitly stated 

and proved in the subsequent literature, although it is certainly part 

of the "folklore" of linear programming and has been used in one form 
2 

or another by several authors .    As a result of this gap in the liter- 

ature, It would seem that the pedagogy and even development of mathe- 

matical programming has suffered unnecessarily.    Primal-motivated 

methods using such tactics    and dual methods are rarely exhibited In 

their proper relation to one another, and it has seldom been recognized 

that computational experience with variants of truly primal methods 

tells us something about the behavior of methods using corresponding 

variants of relaxation.    Tte purpose of this note is to help smoothe 

over this hiatus in the literature. 

See Ballnskl  [l],  Charnes,  Cooper and Miller  [k]f Gonnry [12], and 
Gomory and Hu [13]. 

See, e.g.. Benders  [3],  Cheney and Goldstein [3],  Oantzlg, Fulkerson 
and Johnson il], Gomory [ll], Kelley [l6], Ritter  I19], Stone [23], 
and Van Slyke and Wets  [26]. 
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3. 

In sec. II we formally state a version of relaxation that 

permits constraints to be dropped from, as well as added to, the relaxed 

problems. Termination In a finite number of iterations Is easily shown for a 

general class of concave programs. In sec. Ill we establish, under a 

non-degeneracy assumption, that in the completely linear case a speci- 

alization of the relaxation tactic is equivalent to Lemke's Dual Method. 

Matters pertaining to computational efficacy are discussed in the 

following section. A number of Inferences are drawn, with the help of 

the result of sec. Ill, from available computational experience with 

variants of the Simplex Method. In the fifth and final section we 

establish an enlightening Interpretation of relaxation in terms of the 

dual problem in the nonlinear case. It turns out that the optimal 

multipliers generated by successive relaxed problems comprise a sequence 

of improving feasible solutions to the mlnimax dual. When Interpreted 

in this way, it becomes apparent that relaxation applied to the (original) 

primal problem corresponds to Just the opposite tactic—which we call 

"restriction"—applied to the dual. Restriction is an equally inter- 

esting and useful tactic in its own right, and we conclude the paper 

with an outline of its main features. 
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II.    STATEMENT AND PROOF OF THE RELAXATION TACTIC 

Let    t> g t,,.,a     be concave functions on a non-empty convex 

set XcR ,    and define M ■ (1,2, ...;m}.    The problem 

(P) Maximize v f(x)    subject to    g4(x) > 0,    1 c M x e A ' i       — 

will be converted to a finite sequence of smaller problems of the form 

(PQ) Maximize       „ f(x)    subject to    g.(x) > 0,    1 e S c M. 

Assume that a subset   S     Is known such that     (Ps
0)    admits 

S0 3° an optimal solution   x       (with   f(x    ) < *)*    and assume further that 

(Pg)    admits an optimal solution whenever It admits a feasible solution 

and It* maxlmand la bounded above on the feasible region.    For these 

assumptions to hold It Is of course sufficient, but not necessary, 

that   X   be compact and all functions continuous (one may enforce 

boundedness.  If necessary, by using a "regularization" artifice). 

Under these assumptions, we shall show that the following tactic Is 

well-defined and terminates in a finite number of steps. 

Relaxation 

Step 0;    Put    f ■ <»   and   S ■ S ,    where   S0   is any subset of   M 

such    (Pgo)    admits a finite optimal solution. 
g 

Step 1;    Solve   (Pg)    for an optimal solution   x     if one exists; 

if none exists (i.e.,  (Pg)    is infeasible), then terminate 

with the message "(P) infeasible".    If g^x3) > 0 for all 

1 e M-S, terminate with the message "x     is an optimal 

solution of   (P)n; otherwise, go to Step 2. 
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Step 2: Put v equal to any subset of M that Includes at 

least one constraint violated by x . If f(x ) < f, 

replace S by E 'J v, where E « U e S: g1(x ) » 0), 

and f by f(xS); otherwise (i.e., if f(xS) « f), 

replace S by S (J v. Return to Step 1. 

This tactic simply goes from one relaxed problem to the next 

by adding at least one constraint that is violated at en optimal solu- 

tion of the current relaxed problem, while deleting the amply satisfied 

constraints so long as the value of the objective function is decreasing. 

Eventually a relaxed problem is encountered that is either infeasible, 

in which case (?) obviously must be infeasible, or has an optimal 

solution that is also feasible in (P), in which case that solution ob- 

viously must solve (P), 

To show that the relaxed problems which arise are either in- 

feasible or admit an optimal solution, in view of our assumptions it is 

enough to show inductively that the sequence <f > is non-increasing, 

s s 
where f   is the supremum of the maximand of (Ps) (let f » -«> if 

(P_) is infeasible). Certain^ f3^ < f8, and t0^ < ^ .    We 

assert that r ■ f , which yields the desired monotonicity of <f >. 

Ibis assertion is an easy consequence of 

s s 
Lemma 1.1; Let x  be optimal for (P«). If g.(x ) > 0 , 
———^~" ö J 

3 /   \ 
where J e S , then x  is also optimal for ^P- J. 

Proof; Certainly fS',, > f(xS). Suppose that fS',} > f(xS). Then 

k 
Note the vide latitude in the choice of v. A common choice of v is 
to make it the index of the most violated constraint, but many other 
choice criteria are possible. See the discussion of sec. IV. 
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there exists a point x' feasible in (P,, .) such that fix*) >  f(x ). 

We may assume g.Cx1) < 0, or else x1 would contradict the optlmality 
J 

a 
of x  In (r_). By the concavity of f and the g.,  i € S, and the 

convexity of X, it follows that for \   positive but sufficiently 

small the point Xx« + (l-X)xS is feasible in (?„). But then 

f(Xxl+(l-X)xS) > XfCx1) + (1-X) f(xS) > f(xS), which contradicts the 

S       S"\ s s 
definition of x . Hence f J= f(x ), and x  must be optimal for 

Thus far we have shown that the tactic is well-defined and 

that the sequence <f(x S is non-increasing. Since Step 2 only de- 

letes amply satisfied constraints from S (before adding v) when 

a 
f(x )   has just decreased, it follows from the flnlteness of the 

o 
number of possible subsets of   M   that   <f(x")>   can remain constant 

for only a finite number of consecutive iterations.    Again appealing 

to the flnlteness of the number of possible trial sets, we see that 

finite termination Is established. 

Theorem 1.1;   Relaxation   terminates In a finite number of 

steps with either    (a)    aL optimal solution of (P), or (b) 

the identification of a subset of the constraints of    (P) 

that are collectively infeaslble over   X.    Moreover,  in case 

(a)    a non-increasing sequence   <f(x )>   of upper bounds on 

the optimal value of    (P)    is obtained. 

It Is worth emphasizing again at this point that relaxation 

ia   a tactic and no   more« It is not a computational procedure 

for solving   (P)    until It Is applied In conjunction with an algorithm 

for solving the relaxed  problems    (Pg).     However, let not its utter 

simplicity In the mathematical sense belle its usefulness. 
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Other variants of this tactic for convex programming have 

been given by Geoffrion  [8 and 9], Oettli  [l8],  Sethi  [21],  and Takeuti 

[2k],    See also Cheney and Goldstein 15] for an application and proof 

of similar tactics to problems with an infinite number of constraints 

(cf. footnote  9)• 
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III. RELATION TO THE EUAL METHOD 

The fact that a feasible solution of (P) Is not obtained 
Q 

until the final step,  and that   <f(x )>    is monotone decreasing to the 

optimal value of    (P),    suggests the adjective "dual" in describing re- 

laxation.    In this section we shall show that relaxation can be special- 

ized in a natural way ao as to be equivalent to Lemke*s Dual Method In] 

when    (p)    is a linear program .    A more general dual interpretation is 

suggested in the final section. 

Let    f(x) = ex, gi(x) ■ x.i M »  (1,,.,,n),    and   X » {x:Ax =b) 

hold for   (P),    where       A     IP   a   x n. The Dual Method is 

initiated with some set   B     of variables designated as "basic" which 

yields,  from the "reduced costs" of an associated tabular representation 

of   (P)    (see below),  a feasible solution of the dual to   (P).    Assuming 

that the successive feasible solutions to the dual are non-degenerate, 

we shall prove 

Theorem 2.1;    If   S     is taken as   M-B     and    v   always as 

the most violated constraint,  then the set of non-basic vari- 

ables at the   u   *   iteration of the Dual Method coincides 

with    E   at the   u        Iteration of relaxation^ and the   o 

basic solution coincides with the   v'       x . 

It is necessary to give a brief rendering of the Dual Method 

in order to establish the notation used in the proof.    More complete 

details may be found,   for example,  in [15] or  [ij]. 

Problem   (P)    can be restated as one of maximizing   z    subject 

to   x > 0    and the following equality constraints stated as a tableau 

(m+1 by T&2)    of detached coefficients: 

■'See also Beale's "method of leading variables^' [2], developed independ- 
ently but nearly equivalent to Lemke's Dual Method." 
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Z     X    *■ 1 

1   -c       0 

C    A      b 

At any given iteration there is specified a collection B of m1 

basic variables such that AT  exists, where A-, is formed by ex- 

tracting columns from A according to B, and such that c =  (CTJ-AO" ) A 

.. - c > 0, where Cj, is similarly formed by extraction according to 

B. Moreover, the equality constraints are re-expressed as: 

Z                      X             = 

1      (c^1)* -= 
1 

o        ^ 
I        .  

-       A-l If C = AT b > 0, then it is easily shown that an optimal solution of 

(P) is at hand: put x = 0 for j non-basic and the basic variable 

x_    ( corresponding to the    i        row) equal to   b..    If   b ^ 0,    then let 

b     be the most negative component (actually, any negative component 

will do) and test make sure that at least one component    a       of the 

matrix    AT    A   is negative for some non-basic    j    (if none is negative, 

it can be shown that    (P)    is tifeasible).    Let    k   be defined so that 

—— = Maximum    { 
5rk ärJ 

J   non-basic and    a       < 0 ), 
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and pivot on the element   a .    to obtain the detached coefficient array 

corresponding to the new set of basic variables    (B - B   + k) (x.     is 

called the "entering," and   x^     the "exiting" basic variable).    If 

-1 r 

c. > 0   then    cBA_   b   strictly decreases,  and In any event the new   c 

is also non-negative.    Hie assumption of dual non-degeneracy means that 

c. > 0    for all non-basic    J    at each Iteration, and can always be en- 

forced by arbitrarily small perturbations of the problem data. 

We are now in a position to make three key observations about 

the Dual Method, The first can be found essentially in Charnes, Cooper 

and Miller  [h, p. Tffl. 

Lemma 2.1;    At any iteration of the Dual Method, the current 

basic solution is the unique optimal solution of    (Ps)    with 

S    equal to the current set of non-basic variables (S = M-B). 

Proof;    The current basic solution is certainly feasible in (P« B)« 

To show that it is optimal, by the IXial Theorem of linear programming 

it suffices to display a feasible solution to the dual of    (pM_B)    with 

the same value of the objective function.    One has only to verify, using 

c > 0,    that    (C-RA^ )    i3 such a dual solution.    Uniqueness of the 

optimal solution of   (Pw T,)    follows from the assumed non-degeneracy of 

the dual. 

LCFI« 2.2;    If the IXial Method terminates because    (p)    is In- 

feasible (i.e.,  if   b   < 0   and    a . > 0    for all non-basic   J N r rj - 0 

at some tableau),  then    (P,,),    with    S    equal to the current 

set of non-basic variables plus    B ,    is infeasible. 

Proof;    By the Dual Theorem of linear programming,  it is enough to show 

that the dual of   (P )   is feasible and has an unbounded optimum.    It 
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may he verified that    (cgAJJ1) + 9(^1)r   *    where    (^ )r     ls the   r 

row of   AT    (b   < 0),    Is feasible in the dual for all   8 > 0    and 

achieves an arbitrarily small value of the dual objective as      Q -* *>, 

Lemma 2.3;    At any non-terminal iteration of the Dual Method, 

if   x.     Is the entering basic variable then   x. > 0 In the 

next basic solution. 

Proof;    The definition of the pivot operation implies that   x.   « &■*./*?*) 

In the next basic solution.    By selection,    b   < 0    and   a . < 0. r rK 

Proof of Th« 2.1:    The proof proceeds by induction on    u»    At    ü ■ 1, 

S     has been taken as   M-B0,      the Initial set of non-basic variables. 
so gO 

Lemma 2,1 assurts that    (P0o)   has a unique solution   x    .   Hence   x 
S gO 

must be the Initial basic solution.    Since    x.    »0   by definition for 
J 

all non-basic    J,    E = S ,    Ttms the assertion is true for    u - 1. 
4,1- 

Assume that the assertion is true for the j   iteration o 

of the Dual Method.    Either the    u Iteration is terminal because 

(P)    has been solved,  or is terminal because    (P)    has been found to 

be infeasible, or is not terminal.    In the first case, relaxation also 

terminates with an optimal solution of   (P),    In the second case, by 

Lemma 2.2 the next relaxed problem encounttred is Infeasible and 

therefore terminal.    Consider now the third case.    We shall show that 

the assertion of the theorem holds at the next iteration by detailing 

the operation of relaxation starting at Step 2 of the current iteration. 
g 

IXial non-degeneracy Implies that    f(x )    decreases strictly 

at each iteration.    Hence the trial set to be used at the   ( u +l)8 



12, 

iteration of relaxation is E u B , where JL  is the most negative 

s  r       r 
component of the current x . It follows from Lemmas 2.1 and 2.3 that 

(P v E UB ) has a unique solution, and that all components indexed by 

E UB  vanish in this solution except for x,, which is strictly 

positive. The  assertion of the theorem now follows immediately. 
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IV,    COMPUTATIONAL EFFICACY 

Let us turn now to questions concerning computational efficacy. 

We have already mentioned in sec. I three properties which strongly en- 

courage - if not demand - the use of tactics euch as the present one. 

But this is not to say that computational success will necessarily be 

achieved if these properties hold.    Computational success probably de- 

pends more on the following three conditions: 

(a) only a feirly small proportion of all inequality con- 

straints should actually be binding at an optimal solu- 

tion of (P); 

(b) a reasonably efficient mechanism must be available for 

identifying suitable violated constraints given a trial 

solution of (P); 

(c) a reasonably efficient mechanism must be available for 

reoptlmlzlng the reduced problem at each Iteration. 

That condition (a) often holds has frequently been mentioned 

(and exploited via similar tactics) for various special problem classes; 

for example, by Dantzig, Pulkerson and Johnson  [7] for a linear pro- 

gramming equivalent of the traveling salesman problem, by Dantzig  [6] 

for oil refinery problems, by Charnes, Cooper and Miller  Ik] for 

bounded variables and warehouse-type problems,  and by Van Slyke and Wets 

[26] for optimal control and stochastic programming problems. 

M 
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In fact It is easy to see that condition (a) will always hold for 

linear programs with a large number of inequality constraints relative 

to the number of structural variables,  since an optimal solution occurs 

at an extreme point of the feasible region .    The same line of reasoning 

does not apply to nonlinear problems, but from curvature considerations 

and conmon experience it appears that condition (a) holds even more 

strongly than in the linear case. 

Condition (b) is least troublesome if the inequality con- 

straints are reasonable In number end explicitly available, for then 

there is no difficulty in implementing any reasonable criterion for 

the choice of   v.    Most commonly   v   is taken to be the most violated 

constraint, but many other criteria are possible.    Tliere is little 

theoretical or empirical evidence to distinguish these criteria from 

one another in terms of relative effectiveness.    In view of the result 

of sec. Ill, however, we can perhaps draw some tentative inferences 

based on experience with the purely linear case.    Extensive experiments 
(e.g.,   U7]) 

have been carried out/comparing alternative rules for selecting pivctal 

columns in the usual Simplex Method for linear programming.    This is 

actually the same as comparing analagous rules for choosing a singleton 

v   with     relaxation    applied to the   dual   problem« Results 

indicate that while the "most violated constraint" rule may not be 

best in terms of minimizing the number of required iterations,  other 

plausible rules can be expected to be consistently better by no more 

It should be noted that one could argue (cf.  Smith and Orchard-Hays 
[22] and Stone  [23])for the usefulness in linear programming of tactics 
of the present sort even in the absence of condition (a). 
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than a factor of   two  or so. An example of a somewhat better rule 

is the so-called "greatest-change" rule, which for the present tactic 

amounts to choosing i in M-S to maximize the decrease in the optimal 

value of the next relaxed problem. Unfortunately such a rule is likely 

to be expensive to implement for a nonlinear problem. Choosing v to 

be the most violated constraint typically leads, in the linear case, to 

a number of iterations equal to about twice the number of variables. 

Results pertinent to the choice of v when more than one constraint 

index is allowed are available from experiments with the "suboptimi- 

zation" tactic [27,  p. 190]. It was observed', for example, that taking 

v to consist of the five most violated constraints reduced the number 

of iterations by a factor of two as compared with the single most 

violated constraint rule. Of course this increases the amount of com- 

putation required to solve each X'älaxed problem, but with the product 

form of the Simplex Method there is a significant net benefit in terms 

of total computing time. It is not known to what extent experience 

such as this for the linear case is a useful guide for the choice of 

v in the nonlinear case. 

Condition (b) is more troublesome when the constraints are 

vast in number or only implicitly available. In this case concern over 

the best criterion for the choice of v Is often all but Irrelevant, 

since none but the simplest criteria can be Implemented at reasonable 

computational cost. Sometimes only a few violated constraints are in- 

expensively available each time the relaxed problem is solved, and it 

7 
'Again we Invoke a dual interpretation of the primal algorithm. 



16. 

is indicated that they he used whether or not they satisfy any global 

criterion.    This is the case, for example, with Dantzig, Pulkerson and 

Johnson's problem [7],with Gomory's integer programming algorithms 

[12, p. 133], and with Kelley's cutting-plane method [l6]    .    On other 

occasions one can implement the "most violated constraint" criterion by 

solving a subsidiary optimization problem (or several smaller subsidiary 

problems, should special structure cause the constraints to partition 

naturally into several groups).    This was the prescription of Cheney 

and Goldstein  [5]  in most of their algorithms    .    For Benders   [3] the 

subsidiary problem took the form of a linear program, and for Gomory 

and Hu [13] it took the form of network flow problems.    FOr other special 

structures the subsidiary problem of finding the most violated constraint 

might assume the form of a dynamic program,  or an integer program,  etc.; 

To fnrmally view Kel]ey% method as an instance of relaxetIJBHJ» one may 
represent the relevant portion of the set     {x^.Cx) > 0,    icK)    in (P) 

by the Intersection of an infinite number of containing half-spaces. 
(P) can thus be written as the problem of maximizing   f(x)    subject to 
x   in   X    and    G(xl) + Y * (x-x1) > 0    for all x'    in   X   such that 

A 

GU'^O, where G(x) = Min {g. (x),..., g^x)) and v , is a sub- 

gradient of 0 at x* (if g. (x1) = G^') and g  is differentl- 
0 0 

able, -then one can take y  ' as the gradient of .g  at x*)» Kelley's 
s 0     s 

choice of v corresponds to the constraint G(x ) + Y^3(X-X ) > 0. 

°See especially algorithms I, II, and IV. The  minimand of each problem 
is the supremum of a collection of linear functions. To view this work 
in the present context, each minimand should be expressed as a collection 
of constraints using an additional variable and the least upper bound de- 
finition of a supremum. An Interesting historical sidelight mentioned by 
Cheney and Goldstein is that the roots of their algorithms, and hence of 
relaxation,date back to E. Remez's work on polynomial approximation pub- 
lished in 193^. 
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examples of such algorithms are readily available (see Ballnski [l] and 

Gtomory [l2])if we Interpret primal algorithms with column-generating 

techniques as dual algorithms for the dual problem with row-generating 

techniiiues. Gilmore and Gomory [10, p. 877] have reasoned along these 

lines to establish a connection between their computational experience 

with the cutting-stock problem and previous experience with Gomory's 

integer programming algorithms. They conclude that in large linear pro- 

gramming problems computation times are likely to be long or erratic 

when v is a singleton chosen more or less blindly from the violated 

constraints, as opposed to the choice of v as the most violated con- 

straint . 

Condition (c) is met by the usual post-optimality techniques 

for adding additional constraints if (Po) is a linear program. Ihese 

techniques typically involve an iteration or two of the Dual Method, 

although they can be viewed in purely primal terms (consider the addi- 

tional constraints as functions to be maximized until their values reach 

0) . The latter view is an appropriate one to use in the general non- 

linear case, since it leads to a fairly easy modification of most primal 

nonlinear programming algorithms applicable to (Pq) and takes advan- 

tage of the availability of a feasible and optimal solution to the pre- 

vious relaxed problem. 

Alternatively, one can parametrically deform (in any of several ways) 
each relaxed problem into the next one. 
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V.    DUAL INTERFRETATION:    RESTRICTION 

The utter simplicity of relaxation certainly makes its in- 

terpretation in terms of   (P)    completely transparent.    In the purely 

linear case there is no difficulty interpreting relaxation in terms of 

the dual of    (P)    as veil,  since the Dual Method amounts to the ordi- 

nary Simplex Method applied to the dual problem.    In this section we 

establish an interpretation of relaxation in terms of the dual of    (P) 

for the nonlinear ease.    It is of considerable interest that relaxation 

applied to    (P)    corresponds to a "restriction" tactic applied to the 

dual.    Restriction is a useful tactic in its own right, with a rationale 

and Justification paralleling that of relaxation- in many respects. 

The natural dual problem     associated with    (P)    is 

(D) Minimize I   sup       f (x) + I    X   g   (x)  ]. 
X1 >0,  ieM       xeX ieM 

We assert that the sequence of optimal multipliers associated with the 

g.    constraints of the successive relaxed problems — which can be 

guaranteed to exist under various mild qualifications — constitutes a 

sequence of improving feasible solutions to (D).    Let us denote the 

s s 
optimal multipliers for   (Pg)   by   X.  ,  ieS.    Since   X.    is necessarily 

non-negative,  the feasibility of these multipliers in (D) is inmediate 

s 
(take   X.    ■ 0   for   ieM-S).    By the saddlepoint condition character- 

S    3 
izing   (x ,X  ), moreover, we have 

f(xS) = MaxeX   f(x) + E     X^   gi(x). 
ieM 

A thorough discussion of modem nonlinear duality theory is given by 
Rockafellar [20]. Ve assume here at least a passing familiarity with 
the main concepts and results. 
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That < X >  is an improving sequence of feasible solutions of (D) is 

thus confirmed by the result of sec. II that <f(x)> is a non- 

increasing sequence. 

This result leads one to ask whether there is a natural rationale 

for relaxation when viewed as a method for solving the dual problem. 

Ibe answer is affirmative: relaxation applied to (P) amounts to a 

"restriction" tactic applied to (D). To explain this assertion, it 

will be more enlightening to explain "restriction" as applied to (P) 

rather than to (D). The reader can then understand cm" assertion in 

q 
light of the fact that    g.  (x )    plays the role of the dual var-'able 

S S associated with   X.    in    (D);    it can be shown that    (g (x )|...,R (x )) 

is a subgradient of the minimand of (D) evaluated at    X      (defined as 

above for    S c M). 

Let us now briefly    consider restriction,  the opposite of re- 

laxation, in the context of (P).    Again (P) is converted into a se- 

quence of simpler problems, but now the simpler problems are restricted 

instead of relaxed.    Each is of the form 

(Qg)      Maximize f(x)    subject to   g^x) = 0,  i c  3 c M 
xeX 

gi(x) > 0,  i e M-S, 

where    S   is a subset of the constraint indices.    In order that   (Q-) 

should be a concave program we require   g.    to be linear for   i e S; 

so we may as well assurie that   g.    is linear for all    i e M   by in- 

corporating any nonlinear constraints into    X.    Usually the constraints 

g.(x) > 0,  i e M,    will include the customary non-negativity constraints 

on the variables    (g.Cx) « Xj).    In this case the variables indexed by 
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S   vanish in   (Qg)j    thus if   S   is populous relative to   M;    (Qq) is 

much more tractible than    (P). 

Assume that   (Q^)    admits an optimal solution whenever it is 

feasible and its maximand is hounded above on the feasible region,   and 

that in this event optimal multipliers associated with the    g.    con- 

straints are available.    Then the following tactic is well-defined and 

terminates in a finite number of steps. 

Restriction 

Step 0      Put    f = - »   and    S = 3°,    where    S0    is any subset 

of   M   such that    (Qqo)    is feasible (such a subset 

fails to exist if and only if (P)  is infeasible). 

Step 1      Solve    (Q^)    for an optimal solution   x      (if the 

maximand of   (O«)    is unbounded above,  then the same 

is obviously true of (P)). If the optimal multipliers 

S 
^i    associated with constraints    g.(x) ■ 0 (i t S) 

are all non-negative,  then terminate with the message 

s 
"x     is an optimal solution of (P)"; otherwise,  go 

to Step 2. 

Step 2  Put v equal to any subset of S that includes at 

3 
least one constraint in S for which ^. < 0. If 

f(x ) > f , replace S by S U E-v where E = 

(i e M-S: g (xS) = 0); otherwise (i.e., if f(xS) 

= f), replace S by S-v . Return to Step 1. 
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Note that constraints can enter the restricted set    S,    as 

well as leave it, so long as    f(x )    is increasing.    Clearly each trial 

S S solution    x      is feasible in (P),  and    < f(x  ) >    is a non-decreasing 

sequence. 

It is easy to see that an appropriate specialization of this 

tactic to the linear case is equivalent to the ordinary Simplex Method. 

The set S then corresponds at each Iteration to the current non-basic 

variables. 

The circumstances in which restriction is an appealing tactic 

are precisely those mentioned in sec. I, if we read "variables" for 

"constraints" in the three properties of (?) mentioned there. For 

example, restriction is appealing when the number of variables is very 

great, or when the problem data corresponding to many of the variables 

are available only implicitly unless substantial expense is incurred. 

The circvunstances in which restriction is likely to be computationally 

effective are analagous to those discussed in the previous section for 

relaxation. The  analogue of condition (b), for instance, is that there 

must be a reasonably efficient mechanism at Step 2 for identifying 

variables in S whose corresponding multipliers are negative. Indeed, 

this is exactly what "column-generation" schemes for large-scale linear 

programming are all about. See the surveys by Balinski [l] and Qomory 

[12] for lucid discussions of such schemes. 

That restriction is most highly developed in the context of 

linear progranming should not obscure its applicability in the non- 

linear case. An outstanding example of the use of restriction for 

large structured nonlinear programs is Rosen's convex partition pro- 

gramming algorithm (in [l^]), where it is used subsequent to a 
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"partitioning" of the variables. 

Restriction and relaxation,   although opposites of one another, 

are by no means incompatible.    The author has indicated elsewhere ([8] 

and  [9]) how the two tactics can be employed simultaneously.    The re- 

duced problems then become simpler still than (P^) or (Qo), but assurance 

of finite termination requires somewhat more intricate control.    The 

12 
computational advantages of such a combined approach can be .-drafflatic    • 

12 A.M. Geoffrion,   "Constrained Maximum Liklihood Estimation of Several 
Stochastically Ordered Distributions," The BAND Corporation,  forthcoming. 
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